
MATH2050B 1920 Quiz 2
TA’s solutions1 to selected problems

Unless explicitly stated otherwise, A ⊂ R, l ∈ R, x0 ∈ Ac(cluster pt w.r.t. A).

Q1. Given the definition and its negation for each of the following:

(i) (xn) is Cauchy (a Cauchy sequence).

(ii) x0 is a cluster point w.r.t. a set A of real numbers.

(iii) f(x) converges to a real number l as x→ x0.

Solution.

(i) Definition: For any ε > 0, there is N ∈ N such that for all m,n > N , |xn − xm| < ε.

Negation: There is some ε > 0 such that for all N ∈ N, there is m,n > N with
|xn − xm| ≥ ε.

(ii) Definition: For any ε > 0, there is some a ∈ A, a 6= x0 and |a− x0| < ε.

Negation: There is some ε > 0 such that |x− a| ≥ ε for all a ∈ A.

(iii) Definition: For any ε > 0, there is δ > 0 so that for all y with 0 < |y − x| < δ, one has
|f(x)− f(y)| < ε.

Negation: There is ε > 0 such that for all δ > 0, there is y with 0 < |y − x| < δ and
|f(x)− f(y)| ≥ ε.

Q2. State (without proof)

(i) Monotone Convergence Theorem and Monotone Subsequence Theorem (on existence of
some subsequence)

(ii) Order-preserving Theorem and Squeeze Theorem for limits of functions

Solution.

(i) (Monotone Convergence Theorem) Any bounded monotone sequence of real numbers is
convergent.

(Monotone Subsequence Theorem) Any sequence of real numbers has a monotone subse-
quence.

(ii) (Order-preserving Theorem) Let A ⊂ R be non-empty, x0 ∈ Ac, f, g : A→ R be functions.
Suppose that f(x) ≤ g(x) for all x ∈ A\{x0} and suppose that limx→x0 f(x), limx→x0 g(x)
exist. Then limx→x0 f(x) ≤ limx→x0 g(x0).

(Squeeze Theorem) Let A ⊂ R be non-empty, x0 ∈ Ac, f, g, h : A→ R be functions. Sup-
pose that f(x) ≤ g(x) ≤ h(x) for all x ∈ A\{x0} and suppose that limx→x0 f(x), limx→x0 h(x)
exist and are equal. Then limx→x0 g(x) exists and

lim
x→x0

g(x) = lim
x→x0

f(x) = lim
x→x0

h(x).

1please kindly send an email to nclliu@math.cuhk.edu.hk if you have spotted any typo/error/mistake.
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Q3. State and prove that Bolzano-Weierstrass Theorem (allow to use Q2).

Solution. (Bolzano-Weierstrass Theorem) A bounded sequence of real numbers has a conver-
gent subsequence.

Let (xn) be a bounded sequence of real numbers. By Monotone Subsequence Theorem, (xn)
has a monotone subsequence (xnk

). Because (xnk
) is bounded, so it is convergent by Monotone

Convergence Theorem.

Q4. Let x1 = 4 and xn+1 = 1
3(xn + 5). Show that (xn) is convergent and find its value.

Solution. We claim that (xn) is decreasing. First, x2 = 3 ≤ x1. Suppose that xk ≤ xk−1, then

xk + 5 ≤ xk−1 + 5,

so
1

3
(xk + 5) ≤ 1

3
(xk−1 + 5).

Hence xk+1 ≤ xk. By MI (xn) is decreasing.

Next we claim that (xn) is bounded below. First, x1 ≥ 0 and if xk ≥ 0, then xk+1 = 1
3(xk +5) ≥

0. By MI xn ≥ 0 for all n.

By MCT xn is convergent, say L = limn xn. Because xn+1 = 1
3(xn + 5), so

L =
1

3
(L+ 5).

Hence L = 5
2 .

Q5. Use the definition in ε-δ terminology, show that

(i) limx→3
x2+1
x−2 = 10.

(ii) If limx→x0 fi(x) = li (i = 1, 2) then limx→x0(f1(x)f2(x)) = l1l2.

Solution. (i) First note that

|x
2 + 1

x− 2
− 10| = |x

2 − 10x+ 21

x− 2
| = |(x− 7)(x− 3)

x− 2
|.

Second note that if 0 < |x− 3| < 1
2 , then

5

2
< x <

7

2
,

so
1

2
< x− 2 <

3

2
.

Thus |x− 2| > 1
2 for all x with 0 < |x− 3| < 1

2 . On the other hand,

−9

2
< x− 7 < −7

2
.

Thus |x− 7| < 9
2 for all x with 0 < |x− 3| < 1

2 .
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Now we show that limx→3
x2+1
x−2 = 10. Let ε > 0. Set δ = min{ε19 ,

1
2} > 0, then for all x with

0 < |x− 3| < δ, we have

|x
2 + 1

x− 2
− 10| = |x− 7| · |x− 3|

|x− 2|

<
9

2

2

1
ε
1

9
= ε.

Hence limx→3
x2+1
x−2 = 10.

(ii) First note that

|f1(x)f2(x)− l1l2| = |f1(x)f2(x)−f1(x)l2+f1(x)l2− l1l2| ≤ |f1(x)| · |f2(x)− l2|+ |l2| · |f1(x)− l1|.

Second, we claim that there is δ′ > 0 and M > 0 so that for any x with 0 < |x − x0| < δ′, we
have |f1(x)| ≤M .

Let ε′ = 1. Then there is δ′ so that |f1(x)− l1| < 1 for all x with 0 < |x−x0| < δ′. This implies
that −1 + l1 < f1(x) < 1 + l1 for all x with 0 < |x− x0| < δ′. Therefore there is a large M > 0
so that

−M < −1 + l1 < f1(x) < 1 + l1 < M,

giving |f1(x)| < M for all x with 0 < |x− x0| < δ′.

Let ε > 0. By assumption there is δ′′ > 0 so that for any x with 0 < |x− x0| < δ′′, we have

|f1(x)− l1| < ε
1

2(|l2|+ 1)
, |f2(x)− l2| < ε

1

2M
.

Set δ = min{δ′, δ′′} > 0. For any x with 0 < |x− x0| < δ, we have

|f1(x)f2(x)− l1l2| ≤ |f1(x)| · |f2(x)− l2|+ |l2| · |f1(x)− l1|

< M · ε 1

2M
+ |l2|ε

1

2(|l2|+ 1)

≤ ε.

Hence limx→x0(f1(x)f2(x)) = l1l2.
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