MATH2050B 1920 Quiz 2

TA's solutions^{[1](#page-0-0)} to selected problems

Unless explicitly stated otherwise, $A \subset \mathbb{R}$, $l \in \mathbb{R}$, $x_0 \in A^c$ (cluster pt w.r.t. A).

Q1. Given the definition and its negation for each of the following:

- (i) (x_n) is Cauchy (a Cauchy sequence).
- (ii) x_0 is a cluster point w.r.t. a set A of real numbers.
- (iii) $f(x)$ converges to a real number l as $x \to x_0$.

Solution.

- (i) **Definition:** For any $\epsilon > 0$, there is $N \in \mathbb{N}$ such that for all $m, n > N$, $|x_n x_m| < \epsilon$. **Negation:** There is some $\epsilon > 0$ such that for all $N \in \mathbb{N}$, there is $m, n > N$ with $|x_n - x_m| \geq \epsilon.$
- (ii) **Definition:** For any $\epsilon > 0$, there is some $a \in A$, $a \neq x_0$ and $|a x_0| < \epsilon$. **Negation:** There is some $\epsilon > 0$ such that $|x - a| \geq \epsilon$ for all $a \in A$.
- (iii) **Definition:** For any $\epsilon > 0$, there is $\delta > 0$ so that for all y with $0 < |y x| < \delta$, one has $|f(x) - f(y)| < \epsilon.$ **Negation:** There is $\epsilon > 0$ such that for all $\delta > 0$, there is y with $0 < |y - x| < \delta$ and $|f(x) - f(y)| \geq \epsilon.$
- Q2. State (without proof)
	- (i) Monotone Convergence Theorem and Monotone Subsequence Theorem (on existence of some subsequence)
	- (ii) Order-preserving Theorem and Squeeze Theorem for limits of functions

Solution.

(i) (Monotone Convergence Theorem) Any bounded monotone sequence of real numbers is convergent.

(Monotone Subsequence Theorem) Any sequence of real numbers has a monotone subsequence.

(ii) (Order-preserving Theorem) Let $A \subset \mathbb{R}$ be non-empty, $x_0 \in A^c$, $f, g : A \to \mathbb{R}$ be functions. Suppose that $f(x) \le g(x)$ for all $x \in A \setminus \{x_0\}$ and suppose that $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0} g(x)$ exist. Then $\lim_{x\to x_0} f(x) \le \lim_{x\to x_0} g(x_0)$.

(Squeeze Theorem) Let $A \subset \mathbb{R}$ be non-empty, $x_0 \in A^c$, $f, g, h : A \to \mathbb{R}$ be functions. Suppose that $f(x) \le g(x) \le h(x)$ for all $x \in A \setminus \{x_0\}$ and suppose that $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0} h(x)$ exist and are equal. Then $\lim_{x\to x_0} g(x)$ exists and

$$
\lim_{x \to x_0} g(x) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x).
$$

¹ please kindly send an email to <nclliu@math.cuhk.edu.hk> if you have spotted any typo/error/mistake.

Q3. State and prove that Bolzano-Weierstrass Theorem (allow to use Q2).

Solution. (Bolzano-Weierstrass Theorem) A bounded sequence of real numbers has a convergent subsequence.

Let (x_n) be a bounded sequence of real numbers. By Monotone Subsequence Theorem, (x_n) has a monotone subsequence (x_{n_k}) . Because (x_{n_k}) is bounded, so it is convergent by Monotone Convergence Theorem.

Q4. Let $x_1 = 4$ and $x_{n+1} = \frac{1}{3}$ $\frac{1}{3}(x_n+5)$. Show that (x_n) is convergent and find its value.

Solution. We claim that (x_n) is decreasing. First, $x_2 = 3 \le x_1$. Suppose that $x_k \le x_{k-1}$, then

$$
x_k + 5 \le x_{k-1} + 5,
$$

so

$$
\frac{1}{3}(x_k+5) \le \frac{1}{3}(x_{k-1}+5).
$$

Hence $x_{k+1} \leq x_k$. By MI (x_n) is decreasing.

Next we claim that (x_n) is bounded below. First, $x_1 \geq 0$ and if $x_k \geq 0$, then $x_{k+1} = \frac{1}{3}$ $\frac{1}{3}(x_k+5) \geq$ 0. By MI $x_n \geq 0$ for all n.

By MCT x_n is convergent, say $L = \lim_n x_n$. Because $x_{n+1} = \frac{1}{3}$ $\frac{1}{3}(x_n + 5)$, so

$$
L = \frac{1}{3}(L+5).
$$

Hence $L=\frac{5}{2}$ $\frac{5}{2}$.

Q5. Use the definition in ϵ - δ terminology, show that

- (i) $\lim_{x \to 3} \frac{x^2 + 1}{x 2} = 10.$
- (ii) If $\lim_{x\to x_0} f_i(x) = l_i$ $(i = 1, 2)$ then $\lim_{x\to x_0} (f_1(x)f_2(x)) = l_1l_2$.

Solution. (i) First note that

$$
\left|\frac{x^2+1}{x-2} - 10\right| = \left|\frac{x^2 - 10x + 21}{x-2}\right| = \left|\frac{(x-7)(x-3)}{x-2}\right|.
$$

Second note that if $0 < |x-3| < \frac{1}{2}$ $\frac{1}{2}$, then

$$
\frac{5}{2} < x < \frac{7}{2},
$$

so

$$
\frac{1}{2} < x - 2 < \frac{3}{2}.
$$

Thus $|x-2| > \frac{1}{2}$ $\frac{1}{2}$ for all x with $0 < |x - 3| < \frac{1}{2}$ $\frac{1}{2}$. On the other hand,

$$
-\frac{9}{2} < x - 7 < -\frac{7}{2}.
$$

Thus $|x-7| < \frac{9}{2}$ $\frac{9}{2}$ for all x with $0 < |x - 3| < \frac{1}{2}$ $rac{1}{2}$. Now we show that $\lim_{x\to 3} \frac{x^2+1}{x-2} = 10$. Let $\epsilon > 0$. Set $\delta = \min\{\epsilon\frac{1}{9}$ $\frac{1}{9}, \frac{1}{2}$ $\frac{1}{2}$ > 0, then for all x with $0 < |x-3| < \delta$, we have

$$
|\frac{x^2+1}{x-2} - 10| = \frac{|x-7| \cdot |x-3|}{|x-2|} \n < \frac{9}{2} \frac{2}{1} \cdot \frac{1}{9} \n = \epsilon.
$$

Hence $\lim_{x \to 3} \frac{x^2 + 1}{x - 2} = 10$.

(ii) First note that

$$
|f_1(x)f_2(x) - l_1l_2| = |f_1(x)f_2(x) - f_1(x)l_2 + f_1(x)l_2 - l_1l_2| \le |f_1(x)| \cdot |f_2(x) - l_2| + |l_2| \cdot |f_1(x) - l_1|.
$$

Second, we claim that there is $\delta' > 0$ and $M > 0$ so that for any x with $0 < |x - x_0| < \delta'$, we have $|f_1(x)| \leq M$.

Let $\epsilon' = 1$. Then there is δ' so that $|f_1(x) - l_1| < 1$ for all x with $0 < |x - x_0| < \delta'$. This implies that $-1 + l_1 < f_1(x) < 1 + l_1$ for all x with $0 < |x - x_0| < \delta'$. Therefore there is a large $M > 0$ so that

$$
-M < -1 + l_1 < f_1(x) < 1 + l_1 < M,
$$

giving $|f_1(x)| < M$ for all x with $0 < |x - x_0| < \delta'.$

Let $\epsilon > 0$. By assumption there is $\delta'' > 0$ so that for any x with $0 < |x - x_0| < \delta''$, we have

$$
|f_1(x) - l_1| < \epsilon \frac{1}{2(|l_2| + 1)}, \qquad |f_2(x) - l_2| < \epsilon \frac{1}{2M}.
$$

Set $\delta = \min\{\delta', \delta''\} > 0$. For any x with $0 < |x - x_0| < \delta$, we have

$$
|f_1(x)f_2(x) - l_1l_2| \le |f_1(x)| \cdot |f_2(x) - l_2| + |l_2| \cdot |f_1(x) - l_1|
$$

$$
< M \cdot \epsilon \frac{1}{2M} + |l_2| \epsilon \frac{1}{2(|l_2|+1)}
$$

$$
\le \epsilon.
$$

Hence $\lim_{x \to x_0} (f_1(x) f_2(x)) = l_1 l_2$.